Cart (Loading....) | Create Account
Close category search window
 

Adaptive Reduced-Rank Constrained Constant Modulus Algorithms Based on Joint Iterative Optimization of Filters for Beamforming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wang, L. ; Dept. of Electron., Univ. of York, York, UK ; de Lamare, R.C. ; Yukawa, M.

This paper proposes a robust reduced-rank scheme for adaptive beamforming based on joint iterative optimization (JIO) of adaptive filters. The novel scheme is designed according to the constant modulus (CM) criterion subject to different constraints. The proposed scheme consists of a bank of full-rank adaptive filters that forms the transformation matrix, and an adaptive reduced-rank filter that operates at the output of the bank of filters to estimate the desired signal. We describe the proposed scheme for both the direct-form processor (DFP) and the generalized sidelobe canceller (GSC) structures. For each structure, we derive stochastic gradient (SG) and recursive least squares (RLS) algorithms for its adaptive implementation. The Gram-Schmidt (GS) technique is applied to the adaptive algorithms for reformulating the transformation matrix and improving the performance. An automatic rank selection technique is developed and employed to determine the most adequate rank for the derived algorithms. A detailed complexity study and a convexity analysis are carried out. Simulation results show that the proposed algorithms outperform the existing full-rank and reduced-rank methods in convergence and tracking performance.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 6 )

Date of Publication:

June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.