By Topic

Simultaneous slack budgeting and retiming for synchronous circuits optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shenghua Liu ; Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China ; Yuchun Ma ; Xianlong Hong ; Yu Wang

With the challenges of growing functionality and scaling chip size, the possible performance improvements should be considered in the earlier IC design stages, which gives more freedom to the later optimization. Potential slack as an effective metric of possible performance improvements is considered in this work which, as far as we known, is the first work that maximizes the potential slack by retiming for synchronous sequential circuit. A simultaneous slack budgeting and incremental retiming algorithm is proposed for maximizing potential slack. The overall slack budget is optimized by relocating the FFs iteratively with the MIS-based slack estimation. Compared with the potential slack of a well-known min-period retiming, our algorithm improves potential slack averagely 19.6% without degrading the circuit performance in reasonable runtime. Furthermore, at the expense of a small amount of timing performance, 0.52% and 2.08%, the potential slack is increased averagely by 19.89% and 28.16% separately, which give a hint of the tradeoff between the timing performance and the slack budget.

Published in:

Design Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific

Date of Conference:

18-21 Jan. 2010