Cart (Loading....) | Create Account
Close category search window
 

Buffered clock tree sizing for skew minimization under power and thermal budgets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Athikulwongse, K. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Xin Zhao ; Sung Kyu Lim

In this paper, we study the clock tree sizing problem for thermal-aware skew minimization under power and thermal budgets. Clock wire/buffer sizing affects not only the delay/skew, but also the power dissipation of the clock tree. This effect in turn triggers changes in thermal distribution, making re-computation of the delay/skew necessary. Thus, the interaction among skew, power, and temperature is highly complicated if tied with clock wire/buffer sizing. In order to efficiently combat the time-varying nature of underlying thermal profile, we focus on two kinds of skew, depending on the number of thermal profiles given: skew value and skew range. The former refers to the skew value computed under a single steady-state thermal profile, whereas the latter refers to the skew range computed based on multiple thermal profiles. Our thermal-aware sequential-linear-programming approach maintains near-zero skew value and narrow skew range while keeping the power dissipation and temperature under the given budgets.

Published in:

Design Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific

Date of Conference:

18-21 Jan. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.