Cart (Loading....) | Create Account
Close category search window

Efficient power grid integrity analysis using on-the-fly error check and reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Duo Li ; Dept. of Electr. Eng., Univ. of California, Riverside, CA, USA ; Tan, S.X. ; Ning Mi ; Yici Cai

In this paper, we present a new voltage IR drop analysis approach for large on-chip power delivery networks. The new approach is based on recently proposed sampling based reduction technique to reduce the circuit matrices before the simulation. Due to the disruptive nature of tap current waveforms in typical industry power grid networks, input current sources typically has wide frequency power spectrum. To avoid the excessively sampling, the new approach introduces an error check mechanism and on-the-fly error reduction scheme during the simulation of the reduced circuits to improve the accuracy of estimating the the large IR drops. The proposed method presents a new way to combine model order reduction and simulation to achieve the overall efficiency of simulation. The new method can also easily trade errors for speed for different applications. Experimental results show the proposed IR drop analysis method can significantly reduce the errors of the existing ETBR method at the similar computing cost, while it can have 10X and more speedup over the the commercial power grid simulator in UltraSim with about 1-2% errors on a number of real industry benchmark circuits.

Published in:

Design Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific

Date of Conference:

18-21 Jan. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.