Cart (Loading....) | Create Account
Close category search window
 

Performance-complexity tradeoff of convolutional codes for broadband fixed wireless access systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chatzigeorgiou, I. ; Digital Technol. Group, Univ. of Cambridge, Cambridge, UK ; Demosthenous, A. ; Rodrigues, M.R.D. ; Wassell, I.J.

In this study, the authors investigate the performance-complexity tradeoff of convolutional codes for broadband fixed wireless access systems by considering the effects of quantisation and path metric memory in practical Viterbi decoding implementations. They show that in systems with limited antenna diversity, low-memory codes achieve a better error-rate performance compared to that of high-memory codes. Only in systems with considerable antenna diversity, can the performance of a convolutional code be improved by increasing its memory size. Nevertheless, the authors demonstrate that the coding advantage offered by the high-memory codes is not large enough to justify the significant increase in implementation complexity. In particular, memory-2 convolutional codes achieve a coding gain of up to 1.2 dB over their memory-8 counterparts in single-input single-output fixed wireless access systems. The situation is reversed when multiple antennas are used, but the decoder of memory-8 codes occupies at least 130 times more silicon area than that of memory-2 codes.

Published in:

Communications, IET  (Volume:4 ,  Issue: 4 )

Date of Publication:

March 5 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.