By Topic

Target Detection and Verification via Airborne Hyperspectral and High-Resolution Imagery Processing and Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Bar, D.E. ; Rafael Adv. Defense Syst. Ltd., Haifa, Israel ; Wolowelsky, K. ; Swirski, Y. ; Figov, Z.
more authors

Remote sensing is often used for detection of predefined targets, such as vehicles, man-made objects, or other specified objects. We describe a new technique that combines both spectral and spatial analysis for detection and classification of such targets. Fusion of data from two sources, a hyperspectral cube and a high-resolution image, is used as the basis of this technique. Hyperspectral imagers supply information about the physical properties of an object while suffering from low spatial resolution. The use of high-resolution imagers enables high-fidelity spatial analysis in addition to the spectral analysis. This paper presents a detection technique accomplished in two steps: anomaly detection based on the spectral data and the classification phase, which relies on spatial analysis. At the classification step, the detection points are projected on the high-resolution images via registration algorithms. Then each detected point is classified using linear discrimination functions and decision surfaces on spatial features. The two detection steps possess orthogonal information: spectral and spatial. At the spectral detection step, we want very high probability of detection, while at the spatial step, we reduce the number of false alarms. Thus, we obtain a lower false alarm rate for a given probability of detection, in comparison to detection via one of the steps only. We checked the method over a few tens of square kilometers, and here we present the system and field test results.

Published in:

Sensors Journal, IEEE  (Volume:10 ,  Issue: 3 )