Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

High Volume Diagnosis in Memory BIST Based on Compressed Failure Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mukherjee, N. ; Mentor Graphics Corp., Wilsonville, OR, USA ; Pogiel, A. ; Rajski, J. ; Tyszer, J.

Embedded memories are increasingly identified as having potential for introducing new yield loss mechanisms at a rate, magnitude, and complexity large enough to demand major changes in fault diagnosis techniques. In particular, time-related or complex read faults that originate in the highest density areas of semiconductor designs require new methods to diagnose more complex faults affecting large groups of memory cells. This paper presents a built-in self-test (BIST)-based fault diagnosis scheme that can be used to identify a variety of failures in embedded random-access memory arrays. The proposed solution employs flexible test logic to record test responses at the system speed with no interruptions of a BIST session. It offers a simple test flow and enables detection of time-related faults. Furthermore, the way test responses are processed allows accurate and time-efficient reconstruction of error bitmaps. The proposed diagnostic algorithms use a number of techniques, including discrete logarithm-based counting with ring generators acting as very fast event counters and signature analyzers. Experimental results confirm high diagnostic accuracy of the proposed scheme and its time efficiency.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:29 ,  Issue: 3 )