By Topic

A 0.6-V Zero-IF/Low-IF Receiver With Integrated Fractional-N Synthesizer for 2.4-GHz ISM-Band Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Balankutty, A. ; Dept. of Electr. Eng., Columbia Univ., New York, NY, USA ; Shih-An Yu ; Yiping Feng ; Kinget, P.R.

Supply voltage reduction with process scaling has made the design of analog, RF and mixed mode circuits increasingly difficult. In this paper, we present the design of an ultra-low voltage, low power and highly integrated dual-mode receiver for 2.4-GHz ISM-band applications. The receiver operates reliably from 0.55-0.65 V and is compatible with commercial standards such as Bluetooth and ZigBee. We discuss the design challenges at low voltage supplies such as limited fT for transistors and higher nonlinearities due to limited available signal swing, and present the architectural and circuit level design techniques used to overcome these challenges. The highly integrated receiver prototype chip contains RF front-end circuits, analog baseband circuits and the RF frequency synthesizer and was fabricated in a standard digital 90-nm CMOS process; it achieves a gain of 67 dB, noise figure of 16 dB, IIP3 of -10.5 dBm, synthesizer phase noise of - 127 dBc/Hz at 3-MHz offset, consumes 32.5 mW from 0.6 V and occupies an active area of 1.7 mm2.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:45 ,  Issue: 3 )