By Topic

Iterative-Learning Hybrid Force/Velocity Control for Contour Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Visioli, A. ; Dipt. di Ing. dell''Inf., Univ. of Brescia, Brescia, Italy ; Ziliani, G. ; Legnani, G.

In this paper, we propose a new method, which is based on an iterative-learning-control (ILC) algorithm, for the contour tracking of an object of unknown shape performed by an industrial robot manipulator. In particular, we consider (both implicit and explicit) hybrid force/velocity control whose performance is improved by repeating the task. Here, a time-based reference signal is not present, and therefore, a new approach has been developed, which is different from the typical applications of ILC. Experimental results show the effectiveness of the technique.

Published in:

Robotics, IEEE Transactions on  (Volume:26 ,  Issue: 2 )