By Topic

Joint Opportunistic Subchannel and Power Scheduling for Relay-Based OFDMA Networks With Scheduling at Relay Stations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Byung-Gook Kim ; Dept. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea ; Jang-Won Lee

In this paper, we study a joint opportunistic subchannel and power-scheduling problem in relay-based orthogonal frequency-division multiple-access (OFDMA) networks. In most previous works on relay-based networks, immediate relaying at relay stations (RSs) without allowing opportunistic scheduling at RSs was considered. Under this strategy, each RS should transmit the received data from the base station (BS) to the corresponding mobile stations (MSs) immediately within a single time slot, and thus, the effective data rate of the two-hop transmission (BS-RS and RS-MS links) is limited by the achievable data rate of the link with a worse channel state between the two links, resulting in a waste of radio resources. However, if opportunistic scheduling is allowed not only at the BS but at each RS as well, then more efficient radio resource allocation could be possible. Considering time-varying wireless channels, we formulate a stochastic optimization problem that aims at maximizing the average sum rate of the system while satisfying the quality-of-service (QoS) requirement of each MS. By solving the problem, we develop a joint opportunistic subchannel and power-scheduling algorithm for transmission at both the BS and the RSs. Numerical results show that the proposed scheduling algorithm can significantly improve system performance by allowing opportunistic scheduling at both the BS and the RSs.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:59 ,  Issue: 5 )