By Topic

Feature Selection for Classification of Hyperspectral Data by SVM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pal, M. ; Nat. Inst. of Technol., Kurukshetra, India ; Foody, G.M.

Support vector machines (SVM) are attractive for the classification of remotely sensed data with some claims that the method is insensitive to the dimensionality of the data and, therefore, does not require a dimensionality-reduction analysis in preprocessing. Here, a series of classification analyses with two hyperspectral sensor data sets reveals that the accuracy of a classification by an SVM does vary as a function of the number of features used. Critically, it is shown that the accuracy of a classification may decline significantly (at 0.05 level of statistical significance) with the addition of features, particularly if a small training sample is used. This highlights a dependence of the accuracy of classification by an SVM on the dimensionality of the data and, therefore, the potential value of undertaking a feature-selection analysis prior to classification. Additionally, it is demonstrated that, even when a large training sample is available, feature selection may still be useful. For example, the accuracy derived from the use of a small number of features may be noninferior (at 0.05 level of significance) to that derived from the use of a larger feature set providing potential advantages in relation to issues such as data storage and computational processing costs. Feature selection may, therefore, be a valuable analysis to include in preprocessing operations for classification by an SVM.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 5 )