By Topic

Modeling Complex Architectures Based on Granular Computing on Ontology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yong Liu ; Dept. of Control Sci. & Eng., Zhejiang Univ., Hangzhou, China ; Yunliang Jiang ; Huang, Lican

We propose granular computing (GrC) on ontology as a solution to the problem of modeling complex architectures. We expressed the architectures formally as ontology domains, which include two components: the set of basic vocabularies and a knowledge library of rules. The set of basic vocabularies contains elements or basic architecture components. The knowledge library comprises rules that control the combination and construction of the basic elements. As the rules are often given by architectural experts subjectively, they may contain redundant, conflicting, and overlapping rules, especially in certain styles of ancient southeast Chinese architecture. It is difficult to distinguish or identify these rules; therefore, we apply the multilevel approach on ontology [Y. Liu, C. Xu, Q. Zhang, and Y. Pan, ??Smart architect: Scalable ontology-based modeling for ancient chinese architecture,?? IEEE Intell. Syst., vol. 23, no. 1, pp. 49-56, Jan./Feb. 2008] and approximation theory of GrC. In this process, we present a measurement that is based on roughness functions to evaluate the degrees of approximation between the selected set and certain architecture domains. With the monotonicity characteristic of roughness functions, we can design a heuristic algorithm to select a suitable knowledge base (rule set) to assist in integrating the parts into final architectures, via several levels. Experiments with a real architectural project, i.e., modeling ancient southeast Chinese architectures, show that our method is effective and may simplify the design of the automodeling system and enhance its performance.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:18 ,  Issue: 3 )