By Topic

2.2-MW Record Power of the 170-GHz European Preprototype Coaxial-Cavity Gyrotron for ITER

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Tomasz Rzesnicki ; Karlsruhe Institute of Technology (KIT, former FZK), Institute for Pulsed Power and Microwave Technology (IHM), Association EURATOM-KIT, Karlsruhe, Germany ; Bernhard Piosczyk ; Stefan Kern ; Stefan Illy
more authors

A 2-MW continuous-wave (CW) 170-GHz coaxial-cavity gyrotron for electron cyclotron heating and current drive in the International Thermonuclear Experimental Reactor (ITER) is under development within the European Gyrotron Consortium (EGYC1), a cooperation between European research institutions. To support the development of the industrial prototype of a CW gyrotron, a short-pulse tube (preprototype) is used at KIT Karlsruhe (former FZK) for experimental verification of the design of critical components, like the electron gun, beam tunnel, cavity, and quasi-optical RF output coupler. Significant progress has been achieved recently. In particular, RF output power of up to 2.2 MW with 30% output efficiency has been obtained in single-mode operation at 170 GHz. Furthermore, a new RF output system has been designed, with an efficient conversion of the generated RF power into a Gaussian RF output beam. The results have been successful, yielding a Gaussian mode content ~96%.

Published in:

IEEE Transactions on Plasma Science  (Volume:38 ,  Issue: 6 )