By Topic

Neural network algorithm and backscattering model for biomass estimation of wetland vegetation in Poyang Lake area using Envisat ASAR data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jingjuan Liao ; Center for Earth Obs. & Digital Earth, Chinese Acad. of Sci., Beijing, China ; Lei Dong ; Guozhuang Shen

Poyang Lake is the largest freshwater lake in China with an area of about 3000 km2. Its wetland ecosystem has a significant impact on China's environment change. In this paper, we discuss the neural network algorithms (NNA) to retrieve wetland vegetation biomass using the alternating polarization Envisat ASAR data. Two field measurements were carried out coincident with the satellite overpasses at this area through the hydrological cycle from April and November. Training data of the neural network are generated by the Michigan Microwave Canopy Scattering (MIMICS) model which is often used for the tree canopy. We modified the model to make it applicable to herbaceous wetland ecosystems. The model input parameters are defined according to the wetland circumstance. NNA retrieval results are validated with ground measured data. The inversion results show the NNA combined with MIMICS model is capable of performing the retrieval with good accuracy. Finally, the trained neural network is used to estimate the overall biomass of Poyang Lake wetland vegetation.

Published in:

Geoscience and Remote Sensing Symposium,2009 IEEE International,IGARSS 2009  (Volume:4 )

Date of Conference:

12-17 July 2009