By Topic

Reducing anchor loss in micromechanical extensional mode resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vahdettin Tas ; Bilkent University, Ankara, Turkey ; Selim Olcum ; M. Deniz Aksoy ; Abdullah Atalar

In this work, we propose a novel method to increase the quality factor of extensional mode micromechanical resonators. The proposed resonator topology is suitable for integration in a silicon-based process to fabricate micromechanical filters and oscillators. It is a half-wavelength-long strip excited longitudinally by electrostatic forces, and it is isolated from the substrate by alternating with bars of a quarter wavelength long. This structure causes a large impedance mismatch between the resonator and the substrate and hence reduces the anchor loss considerably. The performance of the resonator is determined by finite element simulations. We introduce an equivalent electrical circuit to predict the performance of the resonator. The electrical model gives results consistent with the finite element simulations. The proposed resonator is expected to have a very small anchor loss resulting in a very high Q.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:57 ,  Issue: 2 )