By Topic

Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Mowatt, Carrie ; Centre of Molecular Materials for Photonic and Electronics, Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom ; Morris, Stephen M. ; Song, Myoung Hoon ; Wilkinson, T.D.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The primary concern of this work is to study the emission characteristics of a series of chiral nematic liquid crystal lasers doped with different laser dyes (DCM, pyrromethene 580, and pyrromethene 597) at varying concentrations by weight (0.5–2 wt%) when optically pumped at 532 nm. Long-wavelength photonic band-edge laser emission is characterized in terms of threshold energy and slope efficiency. At every dye concentration investigated, the pyrromethene 597-doped lasers exhibit the highest slope efficiency (ranging from 15% to 32%) and the DCM-doped lasers the lowest (ranging from 5% to 13%). Similarly, the threshold was found to be, in general, higher for the DCM-doped laser samples in comparison to the pyrromethene-doped laser samples. These results are then compared with the spectral properties, quantum efficiencies and, where possible, fluorescence lifetimes of the dyes dispersed in a common nematic host. In accordance with the low thresholds and high slope efficiencies, the results show that the molar extinction coefficients and quantum efficiencies are considerably larger for the pyrromethene dyes in comparison to DCM, when dispersed in the liquid crystal host.

Published in:

Journal of Applied Physics  (Volume:107 ,  Issue: 4 )