Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Jitter reduction through feedback for picosecond pulsed InGaAsP lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Williams, K.A. ; Dept. of Electr. & Electron. Eng., Bristol Univ., UK ; White, I.H. ; Burns, D. ; Sibbett, W.

Following a comparison of picosecond-pulse generation techniques, feedback schemes are reported for the generation of picosecond pulse trains with improved jitter for both multicontact and conventional single-contact InGaAsP-InP lasers. Subpicosecond jitter is achieved for Q-switched laser sources using a novel optoelectronic feedback scheme. The use of resonant electrical feedback is shown to improve the timing jitter of gain-switched pulses by up to six times. Pulse-to-pulse timing jitter as low as 250 fs is demonstrated for a hybrid of optical and electrical feedback schemes. Limits for timing jitter in diode lasers are established for optoelectronic, electrical, and optical feedback schemes, and the key picosecond pulse generation schemes are compared in terms of timing jitter for the first time

Published in:

Quantum Electronics, IEEE Journal of  (Volume:32 ,  Issue: 11 )