By Topic

Throughput and delay in wireless sensor networks using directional antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hong-Ning Dai ; The Chinese University of Hong Kong, Hong Kong

Most of studies only consider that wireless sensor networks are equipped with only omni-directional antennas, which can cause high collisions. It is shown that the per node throughput in such networks is decreased with the increased number of nodes. Thus, the transmission with multiple short-range hops is preferred to reduce the interference. However, other studies show that the transmission delay increases with the increased number of hops. In this paper, we consider using directional antennas in wireless sensor networks. We have found that using directional antennas not only can increase the throughput capacity but also can decrease the delay by reducing the number of hops. We also construct a time-division multi-access (TDMA) scheme to achieve this. Compared with omni-directional antennas, directional antennas can reduce the interference and lead to the improvement on the network capacity. Furthermore, directional antennas can extend the transmission range, which leads to fewer hops and the lower multi-hop routing delay.

Published in:

Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2009 5th International Conference on

Date of Conference:

7-10 Dec. 2009