By Topic

Use of event detection approaches for outlier detection in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bahrepour, M. ; Pervasive Syst. Group, Univ. of Twente, Enschede, Netherlands ; Yang Zhang ; Meratnia, N. ; Havinga, P.J.M.

Outliers or anomalies are generally considered to be those observations that are considerably diverged from normal pattern of data. Due to their special characteristics, e.g. constrained available resources, frequent physical failure, and often harsh deployment area, wireless sensor networks (WSNs) are more likely to generate outliers compared to their other wireless counterparts. Potential sources of deviated data in a series of measurements are errors, events, and/or malicious attacks on the network. Current studies tend to handle events and errors separately and propose different techniques for event detection as for outlier detection. By bringing the concept of outlier and event close together and assuming that events are some sorts of outliers, in this paper, we investigate applicability of pattern matching-based event detection techniques for outlier detection. Through extensive experiments, we evaluate performance of various event detection techniques to detect outliers and compare them with a recent outlier detection study.

Published in:

Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2009 5th International Conference on

Date of Conference:

7-10 Dec. 2009