Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Domain-Driven Data Mining: Challenges and Prospects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Longbing Cao ; Centre for Quantum Comput. & Intell. Syst. & the Fac. of Eng. & Inf. Technol., Univ. of Technol., Sydney, NSW, Australia

Traditional data mining research mainly focus]es on developing, demonstrating, and pushing the use of specific algorithms and models. The process of data mining stops at pattern identification. Consequently, a widely seen fact is that 1) many algorithms have been designed of which very few are repeatable and executable in the real world, 2) often many patterns are mined but a major proportion of them are either commonsense or of no particular interest to business, and 3) end users generally cannot easily understand and take them over for business use. In summary, we see that the findings are not actionable, and lack soft power in solving real-world complex problems. Thorough efforts are essential for promoting the actionability of knowledge discovery in real-world smart decision making. To this end, domain-driven data mining (D3M) has been proposed to tackle the above issues, and promote the paradigm shift from ??data-centered knowledge discovery?? to ??domain-driven, actionable knowledge delivery.?? In D3M, ubiquitous intelligence is incorporated into the mining process and models, and a corresponding problem-solving system is formed as the space for knowledge discovery and delivery. Based on our related work, this paper presents an overview of driving forces, theoretical frameworks, architectures, techniques, case studies, and open issues of D3M. We understand D3M discloses many critical issues with no thorough and mature solutions available for now, which indicates the challenges and prospects for this new topic.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 6 )