By Topic

Design and Deployment of Sensor Network for Real-Time High-Fidelity Volcano Monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wen-Zhan Song ; Dept. of Comput. Sci., Georgia State Univ., Atlanta, GA, USA ; Renjie Huang ; Mingsen Xu ; Behrooz Shirazi
more authors

This paper presents the design and deployment experience of an air-dropped wireless sensor network for volcano hazard monitoring. The deployment of five self-contained stations into the rugged crater of Mount St. Helens only took one hour with a helicopter. The stations communicate with each other through an amplified 802.15.4 radio and establish a self-forming and self-healing multihop wireless network. The transmit distance between stations was up to 8 km with favorable topography. Each sensor station collects and delivers real-time continuous seismic, infrasonic, lightning, GPS raw data to a gateway. The main contribution of this paper is the design of a robust sensor network optimized for rapid deployment during periods of volcanic unrest and provide real-time long-term volcano monitoring. The system supports UTC-time-synchronized data acquisition with 1 ms accuracy, and is remotely configurable. It has been tested in the lab environment, the outdoor campus, and the volcano crater. Despite the heavy rain, snow, and ice as well as gusts exceeding 160 km per hour, the sensor network has achieved a remarkable packet delivery ratio above 99 percent with an overall system uptime of about 93.8 percent over the 1.5 months evaluation period after deployment. Our initial deployment experiences with the system demonstrated to discipline scientists that a low-cost sensor network system can support real-time monitoring in extremely harsh environments.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:21 ,  Issue: 11 )