Cart (Loading....) | Create Account
Close category search window
 

Sensor-Mission Assignment in Constrained Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Johnson, M.P. ; Dept. of Comput. Sci., City Univ. of New York, New York, NY, USA ; Rowaihy, H. ; Pizzocaro, D. ; Bar-Noy, A.
more authors

When a sensor network is deployed in the field it is typically required to support multiple simultaneous missions, which may start and finish at different times. Schemes that match sensor resources to mission demands thus become necessary. In this paper, we consider new sensor-assignment problems motivated by frugality, i.e., the conservation of resources, for both static and dynamic settings. In the most general setting, the problems we study are NP-hard even to approximate, and so we focus on heuristic algorithms that perform well in practice. In the static setting, we propose a greedy centralized solution and a more sophisticated solution that uses the Generalized Assignment Problem model and can be implemented in a distributed fashion. In what we call the dynamic setting, missions arrive over time and have different durations. For this setting, we give heuristic algorithms in which available sensors propose to nearby missions as they arrive. We find that the overall performance can be significantly improved if available sensors sometimes refuse to offer utility to missions they could help, making this decision based on the value of the mission, the sensor's remaining energy, and (if known) the remaining target lifetime of the network. Finally, we evaluate our solutions through simulations.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:21 ,  Issue: 11 )

Date of Publication:

Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.