Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Understanding how off-chip memory bandwidth partitioning in Chip Multiprocessors affects system performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fang Liu ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Xiaowei Jiang ; Solihin, Y.

Chip Multi-Processor (CMP) architectures have recently become a mainstream computing platform. Recent CMPs allow cores to share expensive resources, such as the last level cache and off-chip pin bandwidth. To improve system performance and reduce the performance volatility of individual threads, last level cache and off-chip bandwidth partitioning schemes have been proposed. While how cache partitioning affects system performance is well understood, little is understood regarding how bandwidth partitioning affects system performance, and how bandwidth and cache partitioning interact with one another. In this paper, we propose a simple yet powerful analytical model that gives us an ability to answer several important questions: (1) How does off-chip bandwidth partitioning improve system performance? (2) In what situations the performance improvement is high or low, and what factors determine that? (3) In what way cache and bandwidth partitioning interact, and is the interaction negative or positive? (4) Can a theoretically optimum bandwidth partition be derived, and if so, what factors affect it? We believe understanding the answers to these questions is very valuable to CMP system designers in coming up with strategies to deal with the scarcity of off-chip bandwidth in future CMPs with many cores on a chip.

Published in:

High Performance Computer Architecture (HPCA), 2010 IEEE 16th International Symposium on

Date of Conference:

9-14 Jan. 2010