By Topic

Applications of Kalman Filtering to Single Hyperspectral Signature Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Su Wang ; Health Sci. Center, State Univ. of New York, Stony Brook, NY, USA ; Chuin-Mu Wang ; Mann-Li Chang ; Ching-Tsorng Tsai
more authors

Kalman filter (KF) is a widely used statistical signal processing technique for parameter estimation. Recently, a KF-based approach to linear spectral unmixing, called KF-based linear spectral unmixing (KFLU) was developed for mixed pixel classification. However, its applicability to spectral characterization for spectral estimation, identification, and quantification has not been explored. This paper presents new applications of Kalman filtering in spectral estimation, identification and abundance quantification for which three KF-based spectral characterization signal processing techniques are developed. These techniques are completely different from the KFLU in the sense that the former performs a KF across a spectral coverage wavelength by wavelength as opposed to the latter, which implements a Kalman filter pixel vector by pixel vector throughout an entire image cube. In addition, the proposed KF-based techniques do not require a linear mixture model as KFLU does. Accordingly, they are not linear spectral unmixing methods, but rather spectral signature filters operating as if they are spectral measures.

Published in:

Sensors Journal, IEEE  (Volume:10 ,  Issue: 3 )