By Topic

Discrete-Time Complementary Filters for Attitude and Position Estimation: Design, Analysis and Experimental Validation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vasconcelos, J.F. ; Inst. for Syst. & Robot. (ISR), Inst. Super. Tecnico, Lisbon, Portugal ; Cardeira, B. ; Silvestre, C. ; Oliveira, P.
more authors

This paper develops a navigation system based on complementary filtering for position and attitude estimation, with application to autonomous surface crafts. Using strapdown inertial measurements, vector observations, and global positioning system (GPS) aiding, the proposed complementary filters provide attitude estimates in Euler angles representation and position estimates in Earth frame coordinates, while compensating for rate gyro bias. Stability and performance properties of the proposed filters under operating conditions usually found in oceanic applications are derived, and the tuning of the filter parameters in the frequency domain is emphasized. The small computational requirements of the proposed navigation system make it suitable for implementation on low-power hardware and using low-cost sensors, providing a simple yet effective multirate architecture suitable to be used in applications with autonomous vehicles. Experimental results obtained in real time with an implementation of the proposed algorithm running on-board the DELFIMx catamaran, an autonomous surface craft developed at ISR/IST for automatic marine data acquisition, are presented and discussed.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:19 ,  Issue: 1 )