By Topic

Assessment of the NASA AMSR-E SWE Product

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tedesco, M. ; Dept. of Earth & Atmos. Sci., City Univ. of New York, New York, NY, USA ; Narvekar, P.S.

Since the launch of the Scanning Multichannel Microwave Radiometer (SMMR) in 1978, several studies have demonstrated the capability of spaceborne passive microwave sensors for mapping global snow water equivalent (SWE). Currently, SWE values are estimated operationally from microwave brightness temperatures measured by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and distributed through the National Snow and Ice Data Center (NSIDC). In this study, we report results regarding the comparison between AMSR-E SWE and SWE/snow depth values distributed by the Snow Data Assimilation System (SNODAS) product of the NOAA's National Operational Hydrologic Remote Sensing Center and snow depth measured by automatic weather stations of the World Meteorological Organization. Generally, we found poor correlation between the AMSR-E and SNODAS SWE/snow depth values. The algorithm performance improves when considering WMO data, though the number of samples used for the analysis might play a role in this sense. We discuss algorithm-related sources of error and uncertainties, such as vegetation and grain size. Moreover, we report results aimed at evaluating whether replacing the linear approach with a nonlinear one and not using the brightness temperatures and ancillary data sets combined as in the current approach but taken separately as inputs to the algorithm might improve the performance of the algorithm.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:3 ,  Issue: 1 )