By Topic

Mechanical Characterization of Human Red Blood Cells Under Different Osmotic Conditions by Robotic Manipulation With Optical Tweezers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Youhua Tan ; Control & Mechatron. Group, City Univ. of Hong Kong & Univ. of Sci. & Technol. of China, Suzhou, China ; Dong Sun ; Jinzhi Wang ; Wenhao Huang

The physiological functions of human red blood cells (RBCs) play a crucial role to human health and are greatly influenced by their mechanical properties. Any alteration of the cell mechanics may cause human diseases. The osmotic condition is an important factor to the physiological environment, but its effect on RBCs has been little studied. To investigate this effect, robotic manipulation technology with optical tweezers is utilized in this paper to characterize the mechanical properties of RBCs in different osmotic conditions. The effectiveness of this technology is demonstrated first in the manipulation of microbeads. Then the optical tweezers are used to stretch RBCs to acquire the force-deformation relationships. To extract cell properties from the experimental data, a mechanical model is developed for RBCs in hypotonic conditions by extending our previous work , and the finite element model is utilized for RBCs in isotonic and hypertonic conditions. Through comparing the modeling results to the experimental data, the shear moduli of RBCs in different osmotic solutions are characterized, which shows that the cell stiffness increases with elevated osmolality. Furthermore, the property variation and potential biomedical significance of this study are discussed. In conclusion, this study indicates that the osmotic stress has a significant effect on the cell properties of human RBCs, which may provide insight into the pathology analysis and therapy of some human diseases.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 7 )