By Topic

Influence of Channel and Gate Engineering on the Analog and RF Performance of DG MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mohankumar, N. ; Dept. of Electron. & Telecommun. Eng., Jadavpur Univ., Kolkata, India ; Syamal, B. ; Sarkar, C.K.

The design of analog and RF circuits in CMOS technology has become increasingly more difficult as device modeling faces new challenges in the deep-submicrometer regime and emerging circuit applications. In this paper, we investigate the influence of both channel and gate engineering on the analog and RF performances of double-gate (DG) MOSFETs for system-on-chip applications. The gate engineering technique used here is the dual-metal gate technology, and the channel engineering technique is the conventional halo doping process. For analog applications, importance is given to the subthreshold regime as CMOS circuits operated in this regime are very much attractive for ultralow-power high-gain performances. Gate- and channel-engineered devices show an increase of gain by 45% and 35%, respectively, compared with the single-metal DG MOSFET. The gate-engineered device shows an improvement of 21.6% and 20% in the case of fT and fMAX values, whereas the channel-engineered device exhibits a reduction of fT by 2.7% with nearly equal fMAX.

Published in:

Electron Devices, IEEE Transactions on  (Volume:57 ,  Issue: 4 )