By Topic

Real-Time Robust Signal Space Separation for Magnetoencephalography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chenlei Guo ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Xin Li ; Taulu, S. ; Wei Wang
more authors

In this paper, we develop a robust signal space separation (rSSS) algorithm for real-time magnetoencephalography (MEG) data processing. rSSS is based on the spatial signal space separation (SSS) method and it applies robust regression to automatically detect and remove bad MEG channels so that the results of SSS are not distorted. We extend the existing robust regression algorithm via three important new contributions: 1) a low-rank solver that efficiently performs matrix operations; 2) a subspace iteration scheme that selects bad MEG channels using low-order spherical harmonic functions; and 3) a parallel computing implementation that simultaneously runs multiple tasks to further speed up numerical computation. Our experimental results based on both simulation and measurement data demonstrate that rSSS offers superior accuracy over the traditional SSS algorithm, if the MEG data contain significant outliers. Taking advantage of the proposed fast algorithm, rSSS achieves more than 75× runtime speedup compared to a direct solver of robust regression. Even though rSSS is currently implemented with MATLAB, it already provides sufficient throughput for real-time applications.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 8 )