By Topic

2 {\hbox {Tb\it/\in}}^{2} Reader Design Outlook

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Yonghua Chen ; Seagate Technol., Bloomington, MN, USA ; Dion Song ; Jiaoming Qiu ; Kolbo, P.
more authors

We review the 2 Tbit/in2 reader design landscape based on existing knowledge and projection. We found that the reader signal-to-noise ratio (SNR) requirement will be highly challenging due to the rapid increase in noise and the additional requirements from assisted writing. An acceptable level of channel bit density can be achieved in spite of a slow head-to-media spacing (HMS) reduction provided that both the shield-to-shield (SS) spacing and the ¿a¿ parameter scale with the bit length. We expect the side reading control for high ktpi to be difficult, and potentially a reader side shield will be required. The reader will likely use a higher quality MgO tunneling giant magnetoresistance (TGMR) stack with improved permanent-magnet coercivity. Certain new structures such as the differential reader or the trilayer will likely be part of the solution.

Published in:

Magnetics, IEEE Transactions on  (Volume:46 ,  Issue: 3 )