By Topic

Channel Models and Detectors for Two-Dimensional Magnetic Recording

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Sann Chan, Kheong ; Data Storage Inst. (DSI), Agency for Sci., Technol. & Res. (A*STAR), Singapore, Singapore ; Radhakrishnan, R. ; Eason, Kwaku ; Elidrissi, Moulay Rachid
more authors

Two-dimensional magnetic recording (TDMR) is a novel recording architecture intended to support densities beyond those of conventional recording systems. The gains from TDMR come primarily from more powerful coding and signal processing algorithms that allow the bits to be packed more tightly on the disk, and yet be retrieved with acceptable error rates. In this paper, we present some preliminary results for an advanced channel model based on micromagnetic simulations, coined the Grain Flipping Probability model. This model requires a one-time computationally complex characterization phase, but subsequently provides fast and accurate two-dimensional (2-D) readback waveforms that include effects captured from micromagnetic simulations and the statistical effects derived from the granularity of the recording medium. We also show the performance of several detectors over a pre-existing TDMR channel model directly as a function of channel density rather than the signal-to-noise ratio (SNR).

Published in:

Magnetics, IEEE Transactions on  (Volume:46 ,  Issue: 3 )