By Topic

Prediction of Acoustic Feature Parameters Using Myoelectric Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ki-Seung Lee ; Department of Electronic Engineering , Konkuk University, Seoul, Korea

It is well-known that a clear relationship exists between human voices and myoelectric signals (MESs) from the area of the speaker's mouth. In this study, we utilized this information to implement a speech synthesis scheme in which MES alone was used to predict the parameters characterizing the vocal-tract transfer function of specific speech signals. Several feature parameters derived from MES were investigated to find the optimal feature for maximization of the mutual information between the acoustic and the MES features. After the optimal feature was determined, an estimation rule for the acoustic parameters was proposed, based on a minimum mean square error (MMSE) criterion. In a preliminary study, 60 isolated words were used for both objective and subjective evaluations. The results showed that the average Euclidean distance between the original and predicted acoustic parameters was reduced by about 30% compared with the average Euclidean distance of the original parameters. The intelligibility of the synthesized speech signals using the predicted features was also evaluated. A word-level identification ratio of 65.5% and a syllable-level identification ratio of 73% were obtained through a listening test.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:57 ,  Issue: 7 )