By Topic

Experimental Characterization and Modeling of Outdoor-to-Indoor and Indoor-to-Indoor Distributed Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Oestges, C. ; Electr. Eng. Dept., Univ. Catholique de Louvain, Louvain-la-Neuve, Belgium ; Czink, N. ; Bandemer, B. ; Castiglione, P.
more authors

We propose and parameterize an empirical model of the outdoor-to-indoor and indoor-to-indoor distributed (cooperative) radio channel, using experimental data in the 2.4-GHz band. In addition to the well-known physical effects of path loss, shadowing, and fading, we include several new aspects in our model that are specific to multiuser distributed channels: 1) correlated shadowing between different point-to-point links, which has a strong impact on cooperative system performance; 2) different types of indoor node mobility with respect to the transmitter and/or receiver nodes, implying a distinction between static and dynamic shadowing motivated by the measurement data; and 3) a small-scale fading distribution that captures more severe fading than that given by the Rayleigh distribution.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:59 ,  Issue: 5 )