By Topic

Motion Artifact Removal for Functional Near Infrared Spectroscopy: A Comparison of Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Robertson, F.C. ; Dept. of Human Biol., Univ. of Cape Town, Observatory, South Africa ; Douglas, T.S. ; Meintjes, E.M.

Near infrared spectroscopy (NIRS) is rapidly gaining popularity for functional brain imaging. It is well suited to studies of patients or children; however, in these populations particularly, motion artifacts can present a problem. Here, we propose the use of imaging channels with negligible distance between light source and detector to detect subject motion, without the need for an additional motion sensor. Datasets containing deliberate motion artifacts were obtained from three subjects. Motion artifacts could be detected in the signal from the co-located channels with a minimum sensitivity of 0.75 and specificity of 0.98. Five techniques for removing motion artifact from the functional signals were compared, namely two-input recursive least squares (RLS) adaptive filtering, wavelet-based filtering, independent component analysis (ICA), and two-channel and multiple-channel regression. In most datasets, the median change in SNR across all channels was the greatest using ICA or multiple-channel regression. RLS adaptive filtering produced the smallest increase in SNR. Where sharp spikes were present, wavelet filtering produced the largest SNR increase. ICA and multiple-channel regression are promising ways to reduce motion artifact in functional NIRS without requiring time-consuming manual techniques.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 6 )