By Topic

Outage Probability of Multiuser Relay Networks in Nakagami- m Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nan Yang ; School of Information and Electronics, Beijing Institute of Technology, Beijing , China ; Maged Elkashlan ; Jinhong Yuan

We evaluate the performance of downlink multiuser relay networks (MRNs) equipped with a single amplify-and-forward (AaF) relay. A thorough and exact analysis is conducted to analyze the outage probability of MRNs under dissimilar Nakagami-m fading conditions. More specifically, we derive new closed-form expressions for the outage probability and the probability density function (pdf) of the highest end-to-end signal-to-noise ratio (SNR) associated with the strongest destination with the single user and Rayleigh fading as special cases. In particular, we provide new results for channel-state information (CSI)-based-gain relaying and fixed-gain relaying. We then demonstrate that the achievable diversity order is equal to either the first-hop fading parameter or the product of the second-hop fading parameter and the number of destinations. Furthermore, we derive compact closed-form expressions for the moments of the highest end-to-end SNR, from which other moment-based measures such as the average SNR and the amount of fading are deduced. Our results highlight the performance improvements offered by opportunistic scheduling and reveal the impact of the relay location with unbalanced hops on the overall performance. Various numerical examples illustrate the proposed analysis.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:59 ,  Issue: 5 )