By Topic

GMM-based efficient foreground detection with adaptive region update

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hao Li ; Dept. of Electr. & Electron. Eng., Univ. of Bristol, Bristol, UK ; Achim, A. ; Bull, D.R.

The accurate detection of moving objects is an important step in the process of tracking and recognition in many real-time video surveillance applications. In this paper, we propose a combination of block-based detection and a pixel-based Gaussian mixture model (GMM) for moving object detection. Compared with traditional pixel-based algorithms which update all pixels for every frame, our algorithm has the ability to selectively update region information within each frame, while offering the capability to refine the silhouette of a foreground object. The algorithm offers an efficient trade-off between complexity and detection performance. The results show improved detection in the presence of high camera noise, high level compression artefacts, camera movements and dynamic background conditions.

Published in:

Image Processing (ICIP), 2009 16th IEEE International Conference on

Date of Conference:

7-10 Nov. 2009