By Topic

A sensor-based approach to linear blur identification for real-time video enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Angelopoulou, M.E. ; Dept. of Electr. .& Electron. Eng., Imperial Coll. London, London, UK ; Bouganis, C.-S. ; Cheung, P.Y.K.

Super-resolution (SR) methods are largely affected by the accurate evaluation of the Point Spread Function (PSF) that is related to the input frames. When the frames are degraded by heavy motion blur, the PSFs are highly non-isotropic, which further complicates their estimation. The ill-posed nature of blur identification is usually addressed using the assumption of linear and uniform motion. However, in real-life systems, this may deviate significantly from the actual motion blur. To resolve the above, this work proposes combining a scheme that validates the initial motion assumption with the real-time reconfiguration property of an adaptive image sensor. If the linearity and uniformity assumption is invalid for a given motion region, the sensor is locally reconfigured to larger pixels that produce higher frame-rate samples with reduced blur. Once the appropriate configuration that gives rise to a valid motion assumption is applied, highly accurate PSFs are estimated, resulting to an improved SR reconstruction quality.

Published in:

Image Processing (ICIP), 2009 16th IEEE International Conference on

Date of Conference:

7-10 Nov. 2009