By Topic

Face recognition system using local autocorrelations and multiscale integration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Goudail, F. ; Lab. Signal et Image, Domaine Univ., France ; Lange, E. ; Iwamoto, T. ; Kyuma, K.
more authors

In this paper we investigate the performance of a technique for face recognition based on the computation of 25 local autocorrelation coefficients. We use a large database of 11,600 frontal facial images of 116 persons, organized in training and test sets, for evaluation. Autocorrelation coefficients are computationally inexpensive, inherently shift-invariant and quite robust against changes in facial expression. We focus on the difficult problem of recognizing a large number of known human faces while rejecting other, unknown faces which lie quite close in pattern space. A multiresolution system achieves a recognition rate of 95%, while falsely accepting only 1.5% of unknown faces. It operates at a speed of about one face per second. Without rejection of unknown faces, we obtain a peak recognition rate of 99.9%. The good performance indicates that local autocorrelation coefficients have a surprisingly high information content

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:18 ,  Issue: 10 )