By Topic

Scale-space properties of quadratic feature detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kube, P. ; Dept. of Comput. Sci. & Eng., California Univ., San Diego, La Jolla, CA, USA ; Perona, P.

We consider the scale-space properties of quadratic feature detectors and, in particular, investigate whether, like linear detectors, they permit a scale selection scheme with the “causality property”, which guarantees that features are never created as the scale is coarsened. We concentrate on the design of one dimensional detectors with two constituent filters, with the scale selection implemented as convolution and a scaling function. We consider two special cases of interest: the constituent filter pairs related by the Hilbert transform, and by the first spatial derivative. We show that, under reasonable assumptions, Hilbert-pair quadratic detectors cannot have the causality property. In the case of derivative-pair detectors, we describe a family of scaling functions related to fractional derivatives of the Gaussian that are necessary and sufficient for causality. In addition, we report experiments that show the effects of these properties in practice. We thus demonstrate that at least one class of quadratic feature detectors has the same desirable scaling property as the more familiar detectors based on linear filtering

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:18 ,  Issue: 10 )