By Topic

Image representation using 2D Gabor wavelets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tai Sing Lee ; Dept. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA

This paper extends to two dimensions the frame criterion developed by Daubechies for one-dimensional wavelets, and it computes the frame bounds for the particular case of 2D Gabor wavelets. Completeness criteria for 2D Gabor image representations are important because of their increasing role in many computer vision applications and also in modeling biological vision, since recent neurophysiological evidence from the visual cortex of mammalian brains suggests that the filter response profiles of the main class of linearly-responding cortical neurons (called simple cells) are best modeled as a family of self-similar 2D Gabor wavelets. We therefore derive the conditions under which a set of continuous 2D Gabor wavelets will provide a complete representation of any image, and we also find self-similar wavelet parametrization which allow stable reconstruction by summation as though the wavelets formed an orthonormal basis. Approximating a “tight frame” generates redundancy which allows low-resolution neural responses to represent high-resolution images

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:18 ,  Issue: 10 )