Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Facial expression recognition based on graph-preserving sparse non-negative matrix factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ruicong Zhi ; Inst. of Inf. Sci., Beijing Jiaotong Univ., Beijing, China ; Flierl, M. ; Qiuqi Ruan ; Kleijn, Bastiaan

In this paper, we present a novel algorithm for representing facial expressions. The algorithm is based on the non-negative matrix factorization (NMF) algorithm, which decomposes the original facial image matrix into two non-negative matrices, namely the coefficient matrix and the basis image matrix. We call the novel algorithm graph-preserving sparse non-negative matrix factorization (GSNMF). GSNMF utilizes both sparse and graph-preserving constraints to achieve a non-negative factorization. The graph-preserving criterion preserves the structure of the original facial images in the embedded subspace while considering the class information of the facial images. Therefore, GSNMF has more discriminant power than NMF. GSNMF is applied to facial images for the recognition of six basic facial expressions. Our experiments show that GSNMF achieves on average a recognition rate of 93.5% compared to that of discriminant NMF with 91.6%.

Published in:

Image Processing (ICIP), 2009 16th IEEE International Conference on

Date of Conference:

7-10 Nov. 2009