By Topic

A novel feature extraction method using Pyramid Histogram of Orientation Gradients for smile recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yang Bai ; Sch. of Electron. & Inf., South China Univ. of Technol., Guangzhou, China ; Lihua Guo, ; Jin, Lianwen ; Qinghua Huang

Recognizing smiles is of much importance for detecting happy moods. Gabor features are conventionally widely applied to facial expression recognition, but the number of Gabor features is usually too large. We proposed to use pyramid histogram of oriented gradients (PHOG) as the features extracted for smile recognition in this paper. The comparisons between the PHOG and Gabor features using a publicly available dataset demonstrated that the PHOG with a significantly shorter vector length could achieve as high a recognition rate as the Gabor features did. Furthermore, the feature selection conducted by an AdaBoost algorithm was not needed when using the PHOG features. To further improve the recognition performance, we combined these two feature extraction methods and achieved the best smile recognition rate, indicating a good value of the PHOG features for smile recognitions.

Published in:

Image Processing (ICIP), 2009 16th IEEE International Conference on

Date of Conference:

7-10 Nov. 2009