By Topic

Facial marks: Soft biometric for face recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Anil K. Jain ; Department of Computer Science and Engineering, Michigan State University, East Lansing, 48824, USA ; Unsang Park

We propose to utilize micro features, namely facial marks (e.g., freckles, moles, and scars) to improve face recognition and retrieval performance. Facial marks can be used in three ways: i) to supplement the features in an existing face matcher, ii) to enable fast retrieval from a large database using facial mark based queries, and iii) to enable matching or retrieval from a partial or profile face image with marks. We use Active Appearance Model (AAM) to locate and segment primary facial features (e.g., eyes, nose, and mouth). Then, Laplacian-of-Gaussian (LoG) and morphological operators are used to detect facial marks. Experimental results based on FERET (426 images, 213 subjects) and Mugshot (1,225 images, 671 subjects) databases show that the use of facial marks improves the rank-1 identification accuracy of a state-of-the-art face recognition system from 92.96% to 93.90% and from 91.88% to 93.14%, respectively.

Published in:

2009 16th IEEE International Conference on Image Processing (ICIP)

Date of Conference:

7-10 Nov. 2009