Cart (Loading....) | Create Account
Close category search window
 

Surface reconstruction from multiple images filtering non-Lambert regions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Büyükatalay, S. ; Comput. Vision & Intell. Syst. Res. Lab., METU Electr. & Electron. Eng., Turkey ; Birgül, O. ; Halici, U.

In this study a new algorithm for 3D surface reconstruction from multiple images using a modified photometric stereo method is proposed and tested. The new algorithm, Filtered Lambert Photometric Stereo (FLPS), determines the non-Lambert pixels in the available images using a linearity test and constructs filtering masks for each image that corresponds to specular and self or cast shadow regions. Then, the photometric stereo is applied after eliminating the points in these masks. Tests carried out on synthetic images show that LPS on filtered images is a feasible solution when more than 4 images are available.

Published in:

Image Processing (ICIP), 2009 16th IEEE International Conference on

Date of Conference:

7-10 Nov. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.