By Topic

Incorporating prior information in the fuzzy C-mean algorithm with application to brain tissues segmentation in MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moumen El-Melegy ; Electrical Engineering Department, Assiut University, 71516, Egypt ; Hashim Mokhtar

This paper introduces a new formula for the objective function of the famous fuzzy C-means algorithm. Two weighted terms are added to the objective function to reflect any available information about the class center and class pixels distribution throughout the datasets. The algorithm is evaluated for the task of the segmentation of medical MRI brain volume. The results show that the algorithm has a considerable robustness against noise and partial volume effects, and it needs a smaller number of iterations to reach convergence compared with other similar algorithms.

Published in:

2009 16th IEEE International Conference on Image Processing (ICIP)

Date of Conference:

7-10 Nov. 2009