By Topic

Causal independence for probability assessment and inference using Bayesian networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heckerman, D. ; Microsoft Corp., Redmond, WA, USA ; Breese, J.S.

A Bayesian network is a probabilistic representation for uncertain relationships, which has proven to be useful for modeling real-world problems. When there are many potential causes of a given effect, however, both probability assessment and inference using a Bayesian network can be difficult. In this paper, we describe causal independence, a collection of conditional independence assertions and functional relationships that are often appropriate to apply to the representation of the uncertain interactions between causes and effect. We show how the use of causal independence in a Bayesian network can greatly simplify probability assessment as well as probabilistic inference

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:26 ,  Issue: 6 )