By Topic

On MCMC-Based particle methods for Bayesian filtering: Application to multitarget tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Septier, F. ; Signal Process. & Commun. Lab., Cambridge Univ., Cambridge, UK ; Pang, Sze Kim ; Carmi, A. ; Godsill, S.

Nonlinear non-Gaussian state-space models arise in numerous applications in control and signal processing. In this context, one of the most successful and popular approximation techniques is sequential Monte Carlo (SMC) methods, also known as particle filters. Nevertheless, these methods tend to be inefficient when applied to high dimensional problems. In this paper, we present an overview of Markov chain Monte Carlo (MCMC) methods for sequential simulation from posterior distributions, which represent efficient alternatives to SMC methods. Then, we describe an implementation of this MCMC-Based particle algorithm to perform the sequential inference for multitarget tracking. Numerical simulations illustrate the ability of this algorithm to detect and track multiple targets in a highly cluttered environment.

Published in:

Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2009 3rd IEEE International Workshop on

Date of Conference:

13-16 Dec. 2009