Cart (Loading....) | Create Account
Close category search window
 

A DNA Encoding Method to Determine and Sequence All Cliques in a Weighted Graph

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ikno Kim ; Grad. Sch. of Inf., Production & Syst., Waseda Univ., Tokyo, Japan ; Watada, J. ; Jui-Yu Wu

In many aspects of advanced applied information technology, science, and bioinformatics, having theoretical concepts based on graph theory provides an important way to create or develop new hybrids, combined information, and intelligent techniques or methods. Finding the maximum weighted clique problem can be a significant issue and concept in graph theory. Meanwhile, encoding biological codes, represented as biological sequence information, is an important process in executing biological computations. In this paper, we focus on a way of encoding biological sequences to create a new encoding method particularly designed to solve clique problems in a weighted graph.

Published in:

Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on

Date of Conference:

7-9 Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.