Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Partial discharge source discrimination using a support vector machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hao, L. ; Tony Davies High Voltage Lab., Univ. of Southampton, Southampton, UK ; Lewin, P.L.

Partial discharge (PD) measurements are an important tool for assessing the health of power equipment. Different sources of PD have different effects on the insulation performance of power apparatus. Therefore, discrimination between PD sources is of great interest to both system utilities and equipment manufacturers. This paper investigates the use of a wide bandwidth PD on-line measurement system consisting of a radio frequency current transducer (RFCT) sensor, a digital storage oscilloscope and a high performance personal computer to facilitate automatic PD source identification. Three artificial PD models were used to simulate typical PD sources which may exist within power system apparatus. Wavelet analysis was applied to pre-process measurement data obtained from the wide bandwidth PD sensor. This data was then processed using correlation analysis to cluster the discharges into different groups. A machine learning technique, namely the support vector machine (SVM) was then used to identify between the different PD sources. The SVM is trained to differentiate between the inherent features of each discharge source signal. Laboratory experiments where the trained SVM was tested using measurement data from the RFCT as opposed to conventional measurement data indicate that this approach has a robust performance and has great potential for use with field measurement data.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:17 ,  Issue: 1 )