Cart (Loading....) | Create Account
Close category search window
 

A Model to Long-Term, Multiarea, Multistage, and Integrated Expansion Planning of Electricity and Natural Gas Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A long-term, multiarea, and multistage model for the supply/interconnections expansion planning of integrated electricity and natural gas (NG) is presented in this paper. The proposed Gas Electricity Planning (GEP) model considers the NG value chain, i.e., from the supply to end-consumers through NG pipelines and the electrical systems value chain, i.e., power generation and transmission, in an integrated way. The sources of NG can be represented by NG wells, liquefied natural gas (LNG) terminals and storages of NG and LNG. The electricity generation may be composed by hydro plants, wind farms, or thermal plants where the latter represent the link between the gas and the electricity chain. The proposed model is formulated as a mixed-integer linear optimization problem which minimizes the investment and operation costs to determine the optimal location, technologies, and installation times of any new facilities for power generation, power interconnections, and the complete natural gas chain value (supply/transmission/storage) as well as the optimal dispatch of existing and new facilities over a long range planning horizon. A didactic case study as well as the Brazilian integrated gas/electricity system are presented to illustrate the proposed framework.

Published in:

Power Systems, IEEE Transactions on  (Volume:25 ,  Issue: 2 )

Date of Publication:

May 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.